当前位置:首页 > 粉体技术 > 技术前沿 > 正文
美国最新冷烧工艺或突破陶瓷烧结技术难关
2016年11月18日 发布 分类:技术前沿 点击量:6867
觉得文章不错?分享到:

背景

烧结是固态物质在高温作用下自动密实化的过程,陶瓷工业中为了节能降耗,学者们不断在向着更低温度并达到更好效果的方向而努力。发展到目前阶段,比如会有投机取巧性质的经验说法如,“无机非金属材料的烧结温度一般为0.7-0.8倍的熔点”等,但除了不严谨之外,也并不适用于很多材料。

 

 

突破

对于成熟的低温共烧陶瓷技术(LTCC-Low-temperature cofired ceramics)而言,一般定义是在<900℃进行烧结。随着技术进步,这种认知可能到了要被打破的时候。

 

近日,美国宾夕法尼亚州立大学的Clive Randall教授和他的同事们研发了一种叫做冷烧工艺(CSP-Cold Sintering Process)的新技术,最高只需200℃就能制成陶瓷,并且最短在15分钟之内就能完成烧结,很大程度上降低了工业制造成本。

 

同时,该技术还提高了原本不相容材料的结合能力(如陶瓷和塑料),为人们创造出更多有用的新型复合材料提供了可能性。

 

 

过程

根据Randall教授在论文里的描述和介绍,新的冷烧CSP技术是一个双重过程:首先,陶瓷粉末需要用少量水或酸性溶液均匀润湿,在粒子与粒子界面之间产生液相,以加速粒子溶解和运动,在特定的温度及压力下,固体颗粒在水性液相的帮助下会经历颗粒重排过程。之后,原子或离子簇会从颗粒接触处分离,从而加速扩散,使粒子表面自由能最小化,陶瓷固体颗粒在这个过程中会通过溶解-沉淀的方式致密化,沉淀来自粒子表面上外延生长的过饱和溶液。


有许多变量可以影响在CSP条件下的烧结,包括粒子大小、水添加量、pH值、溶质添加、施加的压力、烧结温度、保持时间和加热速率等。Randall也指出,知道水分,压力,热量和捕获反应速率所需的时间以确保材料完全结晶和充分致密化也是至关重要的。他表示,“冷烧工艺是由一连串不同挑战构成的,在一些系统中,你不用加压也能制造,但在另一些系统中却需要。在一些系统中你还需要用上纳米粒子,但是在另一些系统中,完全用不上。这取决于你使用的系统和化学反应过程本身。”

 

Randall教授在论文中也区分了CSP冷烧工艺与水热合成技术的区别:水热合成是利用相反应从溶液中结晶出无水物质,通常使用密封反应容器。水热热压和反应性水热烧结可导致固化,但产物通常是多孔的。而CSP工艺的烧结过程中并不一定具有相反应过程。CSP中的少量水溶液增加了致密化的驱动力,这类似于液相烧结的烧结机理,但CSP是部分开放的系统,并且在烧结过程中水可以蒸发到空气中。此外,CSP的设备非常简单,主要包括正常模具和压机以及由温度控制器控制的两个热板,或普通压机和用电控加热器夹套包裹的模具。

 

水热法纳米氧化铁

 

应用

在发明这套工艺后,Randall教授及其团队已开始着手建立一套技术资料库,记录了多种材料系统中采用CSP冷烧工艺所需的精确技术参数,目前已达50多种。其中包括陶瓷-陶瓷复合材料、陶瓷-纳米颗粒复合材料、陶瓷-金属材料,以及上文提到的陶瓷-聚合物材料。Randall团队也宣称,不久的将来,在建筑材料(比如瓷砖)、隔热保温材料、生物医学植入物和许多电子元件的制造中,都可以应用到CSP冷烧工艺。

 

 

Randall表示,“传统上制造陶瓷和陶瓷基复合材料往往需要消耗极为庞大的热量,无论是在窑炉中烧制陶瓷还是使用超高温炉烧结陶瓷粉末,但在如今这个时代,我们必须考虑二氧化碳排放、能源预算等因素,重新思考包括陶瓷在内的许多的制造工艺,而这一切变得至关重要。我希望可以从聚合物制造中学习,反思许许多多已经存在的制造工艺,然后让它们也能使用这个过程。”

 

粉体圈 作者:郜白

参考来源:陶城报等


相关标签:
相关内容:
 

粉体求购:

设备求购:

寻求帮助:

合作投稿:

粉体技术:

关注粉体圈

了解粉体资讯