当前位置:首页 > 粉体技术 > 粉体加工技术 > 正文
液相化学方法控制超细粉体粒度和粉体形貌
2015年05月20日 发布 分类:粉体加工技术 点击量:6351
觉得文章不错?分享到:

液相化学法是当前超细粉体生产的常用工艺方法,下面以液相化学法微粉生产工艺为背景,介绍超细粉体生产过程中的粒度和粒型的基础控制方法——液相化学法。

 

一、粉体粒度控制

 

制备粒度均一分散的超细粉是粉末结构形貌控制的主要目标之一。调节体系过饱和度、添加晶种控制晶核数、促进或阻碍粉体的团聚发生等,是粒度控制的主要策略。在体系溶解度较大的情况下,Ostwald陈化也可调节颗粒粒径及其单分散性。在化学沉淀制粉过程中,微观均匀混合是体系粒度控制的最主要内容。各个微小区域内过饱和度微小变化将导致晶核数目大量变化,从而使晶核大小不一。强制混合是保证微观状态一致、制取粒度均一的超细粉末的有效措施。由于超细粉体极大的表面能,粉末颗粒的形成除了经历了成核、生长等过程外,还可能发生聚结与团聚。如何有效地控制粉体的团聚也是超细粉末尺寸分布控制研究的一个重要内容。

 

二、粉体形貌控制

 

粒子形貌包括形状、表面缺陷、粗糙度等,但主要指形状。纳米粉体,尤其是超微颗粒往往表现出很多形状,除了与其晶型结构有关外,还取决于其合成方法及相应的操作条件。如在湿化学法体系中,颗粒的形状对操作条件极其敏感,溶质浓度、反应体系中阴离子的种类、反应体系是否封闭等因素均可能影响颗粒的形状。一般认为,液相中的超微颗粒可选择性吸附溶液中的简单离子、络离子及有机化合物分子,且不同晶面上被吸附物的种类和数量均有所不同。而溶质浓度、阴离子种类、温度、pH值等操作条件的细微变化均可能影响晶面的吸附情况,这些吸附通过改变晶面的比表面能或生长速度常数而促进或抑制晶面的生长,进而影响超微颗粒的形状。因此,不同操作条件下形成的超微粒子往往呈现多种形态。


此外,添加剂也可改变粉体的形貌。比如,在超细粉体α-Fe2O3合成中,研究者发现陈化时添加柠檬酸、酒石酸,α-Fe2O3粉末呈短柱状、片状或层状,而添加有机磷酸可以得到轴比很大的适宜作磁记录介质的针状粉末。通过添加柠檬酸还可以制备得到阻燃材料用的等轴细棱形片铝钠石和细小片状Mg(OH)2。添加异种物质进行粉末形状控制应考虑以下几点:母晶的晶格结构、剩余的原子价、异种物质分子的极性基大小形状以及配位。

 

液相化学法制粉往往是在高温、强搅拌等条件下进行,由于粉末生长的物理化学条件要求苛刻,影响因素复杂,粉末结构形貌往往难以精确控制。虽然有关湿法化学制粉中粉末结构形貌控制研究已有不少报道,但主要是通过改变反应物浓度、溶液pH值、反应时间、反应温度和添加物种类及数量来实现。总体来看,这项工作还处于研究起始阶段,有许多技术和理论问题有待于进一步探讨。对粉体材料而言,颗粒形貌与粒度,亦是决定其性能的重要因素。有关粉体结构形貌的控制研究已为其应用展现了诱人的前景,但目前粉末结构形貌控制研究还存在许多问题,还有待行业专家及科研院所深入的研究探索。

(粉体圈 作者:终吉)


相关标签:
相关内容:
 

粉体求购:

设备求购:

寻求帮助:

合作投稿:

粉体技术:

关注粉体圈

了解粉体资讯