当前位置:首页 > 粉体技术 > 粉体应用技术 > 正文
陶瓷分散剂的作用和分散机理
2016年10月15日 发布 分类:粉体应用技术 点击量:14940
觉得文章不错?分享到:

一.分散剂的作用

分散剂是指能使固体颗粒表面迅速润湿,又能使固体质点间的能垒上升到足够高的一种表面活性剂,它能在低水分含量条件下,有效的提高浆料的颗粒润湿性、悬浮稳定性及浆体流变性,并使浆料具有适宜的黏度,达到节能降耗之目的。优秀的分散剂在陶瓷浆料的制备过程中,同时发挥着润湿、助磨、稀释和稳定几种作用,对提高陶瓷制品的性能和降低制造成本起着重要的作用。

 

 

1.1 润湿作用

润湿通常指颗粒与颗粒之间的界面被颗粒与溶剂、分散剂等界面所取代的过程。粉体在比其自身的临界表面张力低的溶液中分散性较好,即在同一表面张力的分散介质中,粉体的表面张力越高,介质与颗粒的接触角越小,润湿分散性就越好。为了提高粉体的分散性,必须采用有效的添加剂来降低介质的表面张力。

 

1.2 助磨作用

原料粉碎是陶瓷制备过程中的一个重要环节,特别是粉碎到微米级的粒径耗能费时较多。在湿法球磨过程中,由于分子或粒子的相互撞击、靠近、吸引,粉料往往容易产生团聚,出现“逆研磨”现象,即在粉碎过程中,当物料达到一定细度后继续研磨下去,就会出现越磨越粗的现象。加入分散剂可牢固地吸附在颗粒的裂缝上并能深入到裂缝深处,颗粒粉碎过程中形成的新界面,迅速被分散剂包裹,阻碍了新生界面的重新结合从而加速粉碎过程,明显地缩短粉碎时间,节约能耗,提高研磨效率。

 

1.3 稀释作用

陶瓷浆料要求兼备高固体含量和良好的流动性,加入一定量的分散剂,可以有效的减小浆料的黏度,同时可以适当的减少介质的使用量,有利于减小后序处理过程中的能源消耗。

 

1.4 稳定作用

在没有添加分散剂的情况下,粒子在水中主要受到以下四种力的作用:重力、浮力、粒子/水界面张力和粒子间的相互作用力,导致颗粒容易沉降,浆体稳定性变差;加入分散剂后,由于分散剂吸附在粒子的表面,原有颗粒表面被分散剂部分或全部覆盖,阻碍颗粒团聚,提高浆体的悬浮性和稳定性。

 

二.分散剂的分类

 

 

分散剂按使用介质的不同可分为水性和非水性分散剂;按分散剂所带电荷性质的不同可分为离子型分散剂(阴离子型和阳离子型)和非离子型分散剂;按化学成分的不同可分为无机分散剂、有机小分子分散剂和聚合物分散剂。

 

三.分散剂的分散机理描述

 

关于粉体的分散机理,各国的学者都进行了广泛的研究,提出了不同的模型,其中主要有以下机理:静电稳定机理,空间位阻稳定机理和静电位阻稳定机理。

 

 

1. 静电稳定机理

在固/液悬浮体系中,由于粒子表面电荷的存在,形成了双电层结构和Zeta电位。粒子间静电斥力的大小取决于Zeta电位,而Zeta电位取决于粒子的表面电荷以及电荷密度,电荷密度越高,Zeta电位越高。无机分散剂(三聚磷酸钠,焦磷酸钠)电离成离子后吸附于颗粒表面,颗粒表面形成一种双电层的结构,使其表面电荷密度提高,通过表面同种电荷斥力作用,克服了颗粒间的范德华吸引力,实现分散效果。

 

2. 空间位阻稳定机理

空间位阻机理也称为立体效应或熵效应,主要指颗粒表面上吸附了某些高分子化合物,粒子之间出现体积效应,在一定程度上粒子失去自由活动的空间,相应地降低其熵值,同时增加了粒子之间的相互排斥作用,使分散粒子的接触受到空间障碍,保持了分散体系的稳定性。空间位阻机理主要是对聚合物分散剂而言的,其优越的性能取决于其结构中特有的锚固基团和溶剂化链,

 

1)常见的锚固基团有(-R2、—NR3+、—COO—、—HS03、—S032-、—P043-、多元胺、多元醇及聚醚)等,在水性介质中,它们通过离子键,共价键,氢键等相互作用强力吸附于颗粒表面;

 

2)常见的溶剂化链有(聚醚,聚酯,聚烯烃及聚丙烯酸酯)等,在极性匹配的介质中,溶剂化链延伸到分散介质中,使得相邻颗粒上的聚合物因体积效应而相斥,最终有效地维持体系的悬浮稳定性。

 

 

3. 静电位阻稳定机理

 

将颗粒间静电斥力和空间位阻两种力量共同作用以获得的稳定称为静电空间位阻稳定。粉体颗粒进入溶解有聚合物的溶液后,聚合物分子很快紧密吸附到颗粒表面,并形成稳定的双电层,颗粒相互靠近时既会受到双电层间相互作用产生的静电斥力,又会受到聚合物分子间的位阻作用,从而使颗粒处于一种平衡状态。静电位阻稳定机制能够防止已分散的粒子发生絮凝,最大程度的维持悬浮液的稳定,也是性能优良的分散剂的主要分散机制。而且在制备高固含量的悬浮液时,静电位阻稳定是最有效的途径之一。

 

投稿者:Merton



相关标签:
相关内容:
 

粉体求购:

设备求购:

寻求帮助:

合作投稿:

粉体技术:

关注粉体圈

了解粉体资讯